[Udemy] Automatic Number Plate Recognition, OCR Web App in Python (04.2021)

磁链地址复制复制磁链成功
磁链详情
文件数目:82个文件
文件大小:2.06 GB
收录时间:2021-12-27
访问次数:6
相关内容:UdemyAutomaticNumberPlateRecognitionPython2021
文件meta
  • 1. Introduction/2.1 Project_Files.zip
    473.38 MB
  • 8. Number Plate Web App/6. Integrate Deep Learning Object Detection Model.mp4
    141.72 MB
  • 3. Data Processing/3. Data Preprocessing.mp4
    83.36 MB
  • 2. Labeling/5. XML to CSV.mp4
    81.86 MB
  • 8. Number Plate Web App/8. Display Output in HTML Page.mp4
    78.17 MB
  • 5. Pipeline Object Detection Model/1. Make Predictions.mp4
    74.93 MB
  • 8. Number Plate Web App/9. Display Output in HTML Page part 2.mp4
    71.25 MB
  • 6. Optical Character Recognition (OCR)/3. Exrtract Number Plate text from Image.mp4
    67.37 MB
  • 8. Number Plate Web App/7. Integrate Number Plate Detection and OCR to Flask App.mp4
    66.89 MB
  • 3. Data Processing/1. Read Data.mp4
    61.14 MB
  • 8. Number Plate Web App/5. HTTP Method Upload File in Flask.mp4
    56.66 MB
  • 5. Pipeline Object Detection Model/5. Create Pipeline.mp4
    55.4 MB
  • 3. Data Processing/2. Verify Labeled Data.mp4
    48.62 MB
  • 6. Optical Character Recognition (OCR)/1. Install Tesseract.mp4
    47.8 MB
  • 7. Flask App/3. Render HTML Template.mp4
    47.65 MB
  • 4. Deep Learning for Object Detection/2. InceptionResnet V2 model building.mp4
    45 MB
  • 2. Labeling/3. Install Dependencies.mp4
    40.33 MB
  • 5. Pipeline Object Detection Model/4. Bounding Box.mp4
    39.08 MB
  • 7. Flask App/1. Install Visual Studio Code.mp4
    38.79 MB
  • 7. Flask App/2. First Flask App.mp4
    38.2 MB
  • 2. Labeling/4. Label Images.mp4
    32.08 MB
  • 5. Pipeline Object Detection Model/3. De-normalize the Output.mp4
    30.59 MB
  • 5. Pipeline Object Detection Model/2. Make Predictions part2.mp4
    30.03 MB
  • 4. Deep Learning for Object Detection/8. Tensorboard.mp4
    28.23 MB
  • 3. Data Processing/4. Split train and test set.mp4
    27.4 MB
  • 8. Number Plate Web App/1. Create Web App.mp4
    25.71 MB
  • 7. Flask App/4. Import Boostrap.mp4
    25.69 MB
  • 4. Deep Learning for Object Detection/6. InceptionResnet V2 Training - Part 2.mp4
    24.6 MB
  • 4. Deep Learning for Object Detection/7. Save Deep Learning Model.mp4
    24.07 MB
  • 4. Deep Learning for Object Detection/4. Compiling Model.mp4
    23.94 MB
  • 8. Number Plate Web App/4. Upload Form in HTML.mp4
    22.79 MB
  • 2. Labeling/2. Download Image Annotation Tool.mp4
    22.78 MB
  • 8. Number Plate Web App/3. Template Inheritance.mp4
    22.21 MB
  • 4. Deep Learning for Object Detection/5. InceptionResnet V2 Training.mp4
    21.48 MB
  • 2. Labeling/1. Get the Data.mp4
    18.58 MB
  • 4. Deep Learning for Object Detection/1. Get Transfer Learning from TensorFlow 2.x.mp4
    17.43 MB
  • 4. Deep Learning for Object Detection/3. Defining Inputs and Outputs.mp4
    14.45 MB
  • 6. Optical Character Recognition (OCR)/2. Install Pytesseract.mp4
    12.98 MB
  • 8. Number Plate Web App/2. Footer.mp4
    12.76 MB
  • 1. Introduction/1. Project Architecture.mp4
    12.49 MB
  • 2. Labeling/2.1 labelImg-master.zip
    6.28 MB
  • 8. Number Plate Web App/6. Integrate Deep Learning Object Detection Model.srt
    15.33 KB
  • 5. Pipeline Object Detection Model/1. Make Predictions.srt
    10.81 KB
  • 3. Data Processing/3. Data Preprocessing.srt
    10.61 KB
  • 8. Number Plate Web App/8. Display Output in HTML Page.srt
    9.46 KB
  • 8. Number Plate Web App/5. HTTP Method Upload File in Flask.srt
    8.55 KB
  • 3. Data Processing/1. Read Data.srt
    8.16 KB
  • 7. Flask App/3. Render HTML Template.srt
    7.94 KB
  • 8. Number Plate Web App/9. Display Output in HTML Page part 2.srt
    7.35 KB
  • 4. Deep Learning for Object Detection/2. InceptionResnet V2 model building.srt
    7.2 KB
©2018 cilimao.app 磁力猫 v3.0
使用必读|联系我们|地址发布|种子提交