[FreeCourseSite.com] Udemy - Deep Learning using Keras - Complete Compact Dummies Guide

磁链地址复制复制磁链成功
磁链详情
文件数目:81个文件
文件大小:5.49 GB
收录时间:2021-08-25
访问次数:8
相关内容:FreeCourseSiteUdemyDeepLearningusingKerasCompleteCompactDummiesGuide
文件meta
  • 01 Course Introduction and Table of Contents/001 Course Introduction and Table of Contents.mp4
    255.18 MB
  • 17 Step 2 and 3 EDA and Data Preparation/001 Step 2 and 3 EDA and Data Preparation - Part 1.mp4
    149.77 MB
  • 52 Hyper Parameter Tuning/002 Hyper Parameter Tuning - Part 2.mp4
    125.61 MB
  • 40 CNN Basics/001 CNN Basics.mp4
    125.52 MB
  • 17 Step 2 and 3 EDA and Data Preparation/002 Step 2 and 3 EDA and Data Preparation - Part 2.mp4
    120.41 MB
  • 19 Step 5 and 6 Compile and Fit Model/001 Step 5 and 6 Compile and Fit Model.mp4
    110.25 MB
  • 45 Flowers Classification CNN - Training and Visualization/001 Flowers Classification CNN - Training and Visualization.mp4
    106.53 MB
  • 56 VGG16 Transfer Learning Training Flowers Dataset/002 VGG16 Transfer Learning Training Flowers Dataset - part 2.mp4
    106.31 MB
  • 38 Keras Directory Image Augmentation/001 Keras Directory Image Augmentation.mp4
    105.63 MB
  • 37 Keras Single Image Augmentation/001 Keras Single Image Augmentation - Part 1.mp4
    104.04 MB
  • 30 Step 2 - EDA and Data Visualization/001 Step 2 - EDA and Data Visualization.mp4
    101.08 MB
  • 54 VGG16 and VGG19 prediction/001 VGG16 and VGG19 prediction - Part 1.mp4
    100.73 MB
  • 16 King County House Sales Regression Model - Step 1 Fetch and Load Dataset/001 King County House Sales Regression Model - Step 1 Fetch and Load Dataset.mp4
    99.73 MB
  • 39 Keras Data Frame Augmentation/001 Keras Data Frame Augmentation.mp4
    99.1 MB
  • 52 Hyper Parameter Tuning/001 Hyper Parameter Tuning - Part 1.mp4
    97.98 MB
  • 41 Stride Padding and Flattening Concepts of CNN/001 Stride Padding and Flattening Concepts of CNN.mp4
    96.13 MB
  • 53 Transfer Learning using Pretrained Models - VGG Introduction/001 Transfer Learning using Pretrained Models - VGG Introduction.mp4
    95.91 MB
  • 37 Keras Single Image Augmentation/002 Keras Single Image Augmentation - Part 2.mp4
    95.03 MB
  • 55 ResNet50 Prediction/001 ResNet50 Prediction.mp4
    94.23 MB
  • 42 Flowers CNN Image Classification Model - Fetch Load and Prepare Data/001 Flowers CNN Image Classification Model - Fetch Load and Prepare Data.mp4
    92.3 MB
  • 15 Popular Neural Network Types/001 Popular Neural Network Types.mp4
    89.15 MB
  • 44 Flowers Classification CNN - Defining the Model/002 Flowers Classification CNN - Defining the Model - Part 2.mp4
    89.03 MB
  • 14 Popular Optimizers/001 Popular Optimizers.mp4
    88.35 MB
  • 03 Introduction to Deep learning and Neural Networks/001 Introduction to Deep learning and Neural Networks.mp4
    87.53 MB
  • 13 Popular Types of Loss Functions/001 Popular Types of Loss Functions.mp4
    86.75 MB
  • 23 Step 1 - Fetch and Load Data/001 Step 1 - Fetch and Load Data.mp4
    85.89 MB
  • 04 Setting up Computer - Installing Anaconda/001 Setting up Computer - Installing Anaconda.mp4
    85.57 MB
  • 35 Digital Image Basics/001 Digital Image Basics.mp4
    83.91 MB
  • 20 Step 7 Visualize Training and Metrics/001 Step 7 Visualize Training and Metrics.mp4
    83.53 MB
  • 50 Flowers Classification CNN - Padding and Filter Optimization/001 Flowers Classification CNN - Padding and Filter Optimization.mp4
    82.87 MB
  • 12 Popular Types of Activation Functions/001 Popular Types of Activation Functions.mp4
    79.19 MB
  • 32 Step 4 - Compile Fit and Plot the Model/001 Step 4 - Compile Fit and Plot the Model.mp4
    78.17 MB
  • 56 VGG16 Transfer Learning Training Flowers Dataset/001 VGG16 Transfer Learning Training Flowers Dataset - part 1.mp4
    76.67 MB
  • 24 Step 2 and 3 - EDA and Data Preparation/002 Step 2 and 3 - EDA and Data Preparation - Part 2.mp4
    76.19 MB
  • 26 Step 5 - Compile Fit and Plot the Model/001 Step 5 - Compile Fit and Plot the Model.mp4
    74.42 MB
  • 31 Step 3 - Defining the Model/001 Step 3 - Defining the Model.mp4
    72.82 MB
  • 47 Flowers Classification CNN - Load Saved Model and Predict/001 Flowers Classification CNN - Load Saved Model and Predict.mp4
    69.87 MB
  • 49 Flowers Classification CNN - Dropout Regularization/001 Flowers Classification CNN - Dropout Regularization.mp4
    69.36 MB
  • 24 Step 2 and 3 - EDA and Data Preparation/001 Step 2 and 3 - EDA and Data Preparation - Part 1.mp4
    69.1 MB
  • 36 Basic Image Processing using Keras Functions/002 Basic Image Processing using Keras Functions - Part 2.mp4
    65.45 MB
  • 25 Step 4 - Defining the model/001 Step 4 - Defining the model.mp4
    65.42 MB
  • 18 Step 4 Defining the Keras Model/002 Step 4 Defining the Keras Model - Part 2.mp4
    64.54 MB
  • 43 Flowers Classification CNN - Create Test and Train Folders/001 Flowers Classification CNN - Create Test and Train Folders.mp4
    63.93 MB
  • 05 Python Basics/001 Python Basics - Assignment.mp4
    63.43 MB
  • 10 Basic Structure of Artificial Neuron and Neural Network/001 Basic Structure of Artificial Neuron and Neural Network.mp4
    63 MB
  • 36 Basic Image Processing using Keras Functions/001 Basic Image Processing using Keras Functions - Part 1.mp4
    62.65 MB
  • 08 Pandas Basics/001 Pandas Basics - Part 1.mp4
    58.6 MB
  • 51 Flowers Classification CNN - Augmentation Optimization/001 Flowers Classification CNN - Augmentation Optimization.mp4
    58.59 MB
  • 18 Step 4 Defining the Keras Model/001 Step 4 Defining the Keras Model - Part 1.mp4
    58.17 MB
  • 05 Python Basics/005 Python Basics - Dictionary and Functions - part 1.mp4
    53.6 MB
©2018 cilimao.app 磁力猫 v3.0
使用必读|联系我们|地址发布|种子提交